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Abstract. We study spin-polarization effects in the one-dimensional electron gas with parabolic
dispersion and a repulsive delta-function interaction potential. Using quasi-exact results for
the unpolarized system and exact results for the fully polarized system we derive quasi-exact
analytical resultsfor the ground-state energy as a function of the spin polarization and the
interaction strength. The spin susceptibility as a function of the interaction strength is calculated
and compared with other calculations. We present results for the sound velocity of collective
spin excitations and the sound velocity of collective density excitations.

1. Introduction

In this paper we calculate the spin susceptibility of a one-dimensional electron gas with

a repulsive short-range interaction potential. Such a model was discussed long ago [1, 2]
and the exact ground-state energy (GSE) of this model has been studied [3]. The GSE
was also calculated within the ladder approximation [4] and was found to be in reasonable
agreement with the exact result. Analytical results for the GSE, which are exact for weak and
strong coupling, have been given recently within the ladder approach [5]. Spin-dependent
properties of this model in the strong-coupling limit have not been discussed in the literature.

However, it is known that the fully polarized system is a non-interacting system due to the

action of the Pauli principle and the short-range nature of the interaction [6]. In this paper

we present an analytical formula for the GSE, including polarization effects, which is exact

for small and large coupling. This GSE can be used to calculate the spin susceptibility and
the collective spin-density modes.

Many-body effects in interacting quantum liquids can also be studied within the Singwi—
Tosi—Land—-Sjplander (STLS) approach [7] (compressibility) and the Lobo-Singwi—Tosi
(LST) approach [8] (spin susceptibility). A local-field correction describes many-body
effects within these two approaches [9]. We have recently applied the STLS and the LST
approach to the one-dimensional electron gas with a short-range interaction [10]. In this
paper we will argue that the GSE calculation of the STLS approach, generalized to polarized
systems, is a good approach to describe many-body effects for not too large coupling.

We will also show in this paper that no Bloch instability, a transition from an unpolarized
to a polarized system [11], occurs within our short-range interaction model. This is in
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agreement with a theorem that a polarized system always has a larger GSE than a non-
polarized system [12]. On the other hand we argued before [13] that for a long-range
interaction potential such an instability occurs and we calculated the spin susceptibility for
that model within a generalized STLS approach [14]. It is, therefore, important to get
information concerning the validity range of the STLS approach. In this paper we compare
the results of the STLS approach with quasi-exact results. Our detailed calculation of the
STLS approach will be published elsewhere [15].

The paper is organized as follows. In section 2 we present the model. The analytical
results for the ground-state energy are described in section 3. The spin susceptibility is given
in section 4. In section 5 we discuss the local-field correction. An extensive discussion of
our results is given in section 6. We conclude in section 7.

2. Model

We study a one-dimensional electron gas with kinetic energy, characterized by an effective
massm and the parabolic dispersioa(q) = ¢?/2m. We use for the Planck constant
h/2m = 1. The interaction is characterized by the potentigl The interaction potential
between two particles a, andr; is given by V (r1, r2) = Vod(r1 — r2). In the Fourier
space the interaction potential is independent of the wave nupbesnd expressed as
V(g) = Vo > 0. The electron densityv, the electron mass and the strength of the
interaction define the dimensionless parameteas y = mVy/N = nVy/2vr > 0 and
vrp = krp/m is the Fermi velocity. The electron density defines the Fermi wave number
krp via N = 2kp/m. pr = N/2¢fr is the density of states at the Fermi energyof the
non-interacting electron gas.

The spin-polarization parametgmwith 0 < |&] < 1 is given byé = (N, — N_)/N with
N = N, + N_. The electron densitie§.. are expressed @¢. = N(1+ |£])/2. The Fermi
wave numbers of the polarized subsystems are writtetyas= kr(1 £ |£]) = 7 N+. The
essential parameters of the theory arandé for the electron gas and for the interaction.

Weak coupling meang < 1 and strong coupling is representedijby- 10. Of course,
it is the intermediate regime ¢ y < 10 where our analytical results are most important for
experimenters. In the weak coupling regime the physics is determined by exchange effects,
which can be calculated analytically. In fact, we we will show that the STLS approach is
a good theory foy < 10.

3. Ground-state energy

The ground-state energy,(y, &) per particle is related to the total ener@y(y, &) =
Neg(y, €). In the following we present results feg(y, £) in units of N2/2m via

eo(y, &) = N%eo(y, &)/2m (1a)

and give explicit expressions fa@g(y, &), which is a dimensionless quantityg(y, £) can
be written as [16]

eo(V,§) = €kin(V. §) + eu(y, &) + €ex (¥, §) + €cor (¥, §) (1b)
with the kinetic &in) energy contribution as
erin(y, §) = m2(1+ 36%)/12 ()

the Hartree H) energy contribution as
en(y,§) =y (2b)
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and the exchange) energy contribution as

ex(y,E) = —y(1+&%)2 (2c)

We note that within the Hartree—Fock approximation (HFA) the interaction energy is given
bY enra(v, &) = en(y, &) + e (y, &) = y(L—£2)/2.

In a recent paper [5] we derived, using the ladder theory, for the correlation energy
Eeor (v, & = 0) = —y?/[?(1 + 2y /7?)]. Including the spin polarization we use thesatz
eor(V, E) = €cor (v, & = 0) f(§). f(§) describes polarization effects witi(é = 0) = 1.

What more can we say about(&)? Interaction effects are absent for the fully polarized
system: an electron system with all spins aligned cannot interact via a short-range potential.
It follows that eo(y, & = +1) = 72/3 and we conclude thaf(é = +1) = 0. We

note that /(&) is an even function ok. In the strong coupling limit it is known that

goly — 00,& = 0) = go(y — 00, & = +1) = 72/3. It is obvious that this holds for
every polarization:so(y — oo, —1 < & < 1) = 72/3. From our results foy — oo we
obtainy[1 — £2 — f(£)] = 0 andy[1 + 352 4+ 3f(¢)] = 4: both equations are solved by

f (&) =1— &2 This form of f (&) is in agreement with the polarization dependence of the
interaction energy obtained within the HFA.

For the three-dimensional electron gas with long-range Coulomb interaction it was
proposed that polarization effects are described ey (v, &) = €cor(r5, € = 0) +
[‘Qcor(rsvé}- = :tl) - Scor(rsag = O)]h(S) with h(é = 0) = 0 and h(é = :tl) =1
[17]. r, is the Wigner—Seitz parameterk(£) is proportional to the factor describing
polarization effects of the exchange term, which is in our qdse £2), see equation :
h(€) = C1+ C2(1+ £2). In order to satisfyh(§ = 0) = 0 andh(é = +1) = 1
we obtainC, = 1 = —C; and we conclude that for our modéks) = £2. With
Ecor(yvé = :tl) =0 we deriveec‘or(V’S) = SL'UV(V’S = 0) - gcor(yaé = O)h(%-) and
we find ecor (v, §) = €cor (v, € = 0) f(§) With f(§) =1 —h(§) = 1 - £

We conclude that the correlation energy, including polarization effects, is given by

y?’(1-¢%
w2(1+2y/7?)
For weak coupling the energy differenge.,, (y, & — 0) = .o (¥, € = 0)—&c0r (v, € = 0)
is given asAe,,, (v, & — 0) = y2£?/m2. Using the mean spherical approximation (MSA)
[14], which is exact in the weak coupling limit, one obtairs ., ysa(y,& — 0) =
3y%t2/2x? for y — 0. The MSA represents the random-phase approximation (RPA) or
the mean-field approximation. However, in the MSA the static structure factor is used in
analytical form. The difference ine,,, (y, &€ — 0) (the factor 1 instead of 3/2) in the weak
coupling regime is the price we have to pay for using a simple functiorf 6y: remember
that f(£) = 1 — £2 was determined from strong coupling (in section 6 we come back to
this point). However, from our numerical results, see figure 1, it is clear that the difference
is of minor importance because for weak coupling the exchange term dominates the GSE.

With f(&) = 1 — &2 we get for the GSE

72 (1+ 362) y(1-£%)
12 21+ 2y /7?)°

This is the essential equation of our paper. Eot 0 this function was given before and
the compressibility was calculated and related to critical exponents [5]. In the following we
derive conclusions by using the GSE as given in equation (4). The GSE yeisushown

in figure 1 for different values of the spin-polarization paramétangether with results
obtained within the STLS approach [15].

Scor(ya E) = - (3)

4

eo(y, §) =
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Figure 1. Ground-state energyo versus interaction strength parameter according to
equation (4) for different values of the spin-polarization paramgtérhe dashed lines represent
the results within the STLS approach [15].

The total energy also can be written as

T2

Y
oty §) = (1437 + fo g, £, 2 = 0) 5)

and g(y, &,z = 0) is the pair distribution function. We conclude thaty, &,z = 0) is
given by

gy, & 2=0) = (1- ) /[2(1+ 2y /7). (6)
Due to the Pauli principle the pair distribution function vanishes for the polarized system
with & = £1.
With the ground-state energy one can calculate the chemical potgngisl
n/er =1+ 3%+ 4y (1+3y/n%) (1 - &%) /[»*(1+ 2)//7'(2)2] (7a)
the kinetic energy per particle as
t/er = [1+ 362+ 12/2(1 - %) /[n*(1 + 2y /=?)?]] /3 (7h)
and the potential energy per particle as
v/ep =2)/(1—52)/[712(14-27//712)2]. (70)

Note thatv =0 for y =0, 1/y =0 oré = £1. For 1/y = 0 interaction effects disappear,

v = 0, and the particles behave as free (spinless) particles [6]. Our results foand v
versusy are shown in figure 2 for different values of the polarization parameter. We note
that the potential energy has a maximum ay = yyra = 72/2 ~ 4.9 andv decreases
with increasing polarization.

4. Spin susceptibility

The spin susceptibilityc, can be expressed by the second derivative of the GSE as
32E,/N?3€% = mvrko/2x, [16] with ko = 4m/m2N?3 as the spin susceptibility of the
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Figure 2. Chemical potentiaj, kinetic energy: and potential energy per particle (in units
of the Fermi energyr of the free electron gas) versus interaction strength paramefter
different values of the spin-polarization parametesiccording to equation (7).

free electron gas. One obtains

2 .
ko =1+—2 Ilm[
Ky T =0

82(86X + Ecor) Ko 2
T} =1+ =+ o, @8)

oy = limg_o[8%e.0 (v, £)/0E?] is called the spin stiffness. We mention that the
Hartree term does not contribute to the spin susceptibility. The exchange contribution
iS Ko/Ksex = —2y/m?.  With equation (4) we derive for the correlation contribution
ay = 2y?/[7?(1 + 2y/7?)]. The limiting behaviour ise; = 0.203y2 for y — 0 and
ay = y(1—m?/2y) for y — oo.

With equation (4) we find the analytical result for the spin susceptibility as

Ks,ex

Ko 1

ks 142y /a2 ©)
The asymptotic result is written ag/k, = 1 — 2y /m? + 4y?/n* for y — 0. The term
—2y/m? represents the exchange correction. The tegm/4* is the first correlation
correction to the inverse spin susceptibility. In the strong coupling limit we obtain
ko/ks = m2(1 — 72/2y)/2y for y — oco. We mention thak,/ko = 1+ 2y /72 increases
linearly with increasing coupling, a behaviour also found for the Hubbard model [18].

It is interesting to note that the spin susceptibility, as given in equation (9), can also be
obtained fromko/k; = 4[eo(y, & = 1) —eo(y, £ = 0)]/m2. A similar equation is sometimes
used for interacting systems with a long-range Coulomb interaction. Within three different
methods, (i)f (&) = 1 — &2, (i) (&) = £2 and (iii) eo(y, £ = 1) — go(y, & = 0), we found
Ko/ks @s given in equation (9). We believe that this fact gives credit to our expression for
the spin susceptibility.
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Figure 3. Inverse spin susceptibility/k, (in units of the inverse spin susceptibility of the free
electron gas A«p) versus interaction strength parameteaccording to equation (9) as the solid
line. The results according to the HFA, the MSA, the LST approach [10] and the STLS approach
[15] are also shown.

Let us now discuss some approximating expressions for the spin susceptibility. Within
the HFA, neglecting correlation, one obtains

0 _1-2y/m2 (10)

Ks,HFA
In a recent paper an analytical result for the spin susceptibility of a one-dimensional electron
gas with a long-range interaction potential was calculated within the MSA [14]. For the
present model we obtain

Ko 1
ksomsa (L4 4y /a2 (1)

The weak coupling expansion is written ag/cs ysa = 1 — 2y /7% + 6y?/7* for y — 0.
We note that the correlation correction ig%7* and somewhat larger that found in our
analytical approach. Numerically, this difference is barely visible, see figure 3.

Our different results for the spin susceptibility versusare shown in figure 3. We
find L/ks mpra < 1/ks < /K5 msa. We note thatg/x; > 0 and never becomes zero. This
shows that the non-polarized system is stable for any value of the interaction pargmeter
A Bloch instability ko/ks zr4 = 0 occurs within the HFA a4 = 72/2. Correlation
effects shift this instability point toy — oc.

Our calculation using the STLS approach, also shown in figure 3, indicates that the
STLS approach has a validity range of abguk 10~ 2yyrs. The term STLS is applied
for the calculation of the spin susceptibility using GSE calculations [15]. Within the LST
approach, see our results in [10], the spin susceptibility is calculated via the local-field
correction and this approach is rather inaccurate, as can be seen in figure 3. On the other
hand we mention that the LST approach does not predict an (artificial) instability as does
the HFA.

5. Local-field correction and collective modes

Our results forkg/k; can be applied to obtain information on the dynamic properties of
the interacting electron gas. We define the local-field corredtiofy, w) by the dynamic
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Figure 4. Density velocityv; and spin velocity; (in units of the Fermi velocityr of the free
electron gas) versus interaction strength parametefhe dotted lines correspond to the STLS
approach derived from GSE calculations [15].

spin-density response functioty (¢, ) as [9]
Xo(q, w)
1-Gy(q, w)Xo(g, )’
Xo(g, w) is the Lindhard function of the free electron gas. Note that the local-field correction

depends oy andw. By using the compressibility sum rul€;(g — 0, w = 0) = N,
one finds [16]

Xs(q, 0) = (12)

Ko/ks = 1 — 4y G,(0, 0) /7. (13)
With the analytical expression fai/«, in equation (9) we derive
G;(0,0) = 1/[2(1 + 2y /n?)] (14)

with G,(0,0) = (1 — 2y /n? + 4y?/n*) /2 for y — 0 and G, (0, 0) = 72/4y for y — oo.
Within the LST approach, wher&,(¢, w) = G, is independent otv and ¢, we found
G, = n?/8y for y — oo [10]. We conclude that the¢: dependence of;, for large y is
the same as fo6, (0, 0); however, the prefactors are different.

The collective modes are given as the polesXafg, w). One finds in the long
wavelength limitw,(q)/vrlg| = [ko/ks]¥? [16]. For the sound velocity, of spin (s)
waves, usingo;(¢ — 0) = v|¢q|, we obtain

vy = vp/(L+ 2y /7?2 (15)

The relation for spin waves is analogous to the relation found for the sound velgcity
of density (d) waves given by, = vr[ko/k]Y? with ws(g — 0) = vy|q| andk as the
compressibility of the system [16]. Analytical results fqy/« have been given in [5].

Numerical results fon,/vr andvg/vr versusy are shown in figure 4 together with
the results of the STLS approach. The STLS results for the compressibility and the spin
susceptibility are obtained from GSE calculations [15]. We conclude that the STLS approach
is trustworthy fory < 10~ 2yyrs. Within the LST approach [10] one findg/vr = 0.5
for y — oo becausds, (0, 0) = 2G;.

In the literature the difference between and v, is called spin-charge separation
[19]. Numerical results similar to our results as shown in figure 4 have been found for
the one-dimensional Hubbard model [20]. The two paramekgrsand K, defined by
32E,/ON? = mvy/2K, and by 0%E,/N?3&2 = mv,/2K,, are related to non-universal
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exponents of the power-law behaviour of correlation functions [19]. For our model we find
Ky = (k/ko)Y? [5] and K, = (ks /k0)Y? = (1 + 2y /7?)Y2. We conclude that analytical
results are obtained fat,; and K;. We are not aware that in the literature analytical results
have been obtained fak;.

6. Discussion

6.1. The polarization ansatz

The essential approximation in this paper was the approximation for polarization dependence
of the correlation energy. We us¢dé) = 1—£2. We have chosen this form for convenience
and because the application of three different methods leads to the same form of the spin
susceptibility.

In fact, we could introduce a more complicated function, for instafig® = 1— p(y)&?2
with p(y — o0) = 1+ O(1/y?) and p(y — 0) = 3/2. For the spin susceptibility we
obtain

ko _ 1-4y*1— p()]/=*
Ks 1+ 2y/n?

With p(y) = (3+ ¥?)/(2+ y?), which has the correct asymptotical behaviour, we derive
in the weak coupling limitco/k, = 1 — 2y/m? + 6y?/x*. This is the exact expression
for weak coupling. In the strong coupling limit, usingy — oo) = 1+ 1/y2, we find
ko/ks = (1 4+ 4/7% /(1 + 2y /7?) and the factor A7* ~ 0.04 in this expression is due to
the use of the functiop(y). This shows that in the strong coupling limit(y) modifies
our results by less than 4%. We have verified numerically thayfer 10 the corrections
introduced byp(y) are even smaller than 4%. This is clear because our results obtained
before withp(y) = 1 (f(§) = 1 — £2) are in agreement with the STLS approach, which
is the correct weak coupling theory, see figure 3. We believe that these arguments are
convincing and justifyf (£) = 1 — £2. However, the discussion also shows that even ‘more
accurate’ results can be obtained by using a ‘more sophisticated’ polarization dependence
of the correlation energy.

We would like to mention that for the LFC, including(y), we obtain

1+2y[1 - p(y)]/7*
21+ 2y /7
and p(y — oo) does not modify the strong coupling limit.

(16)

G0, 0) =

(17)

6.2. Results

The collective modes are determined by the compressibility and the spin susceptibility.
Our analytical results concerning spin-density modes and the spin susceptibility might be
useful for experimenters [21]. We mention that our theory describes collective density
modes and collective spin modes together with one-particle (electron—hole) excitations, see
equation (12). In experiments with quantum wires these three kinds of mode have been
observed [22—24]. Note that within theories using the bosonization approach one-particle
excitations do not exist [19, 20]—they become lost in the bosonization approximation. Of
course, in order to describe qualitatively the collective modes found in experiments with
guantum wires [22-24], a long-range Coulomb interaction potential [25] should be used in
the calculation. However, we believe that the model discussed in this paper is the simplest
model in solid-state physics in order to study many-body effects.
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From our results for the spin susceptibility, the collective modes and the comparison
with results obtained from GSE calculations within the STLS approach we conclude that
the STLS approach gives quantitatively accurate resulty fer 2yy -4 ~ 10. We believe
that the case of a short-range interaction potential is the worst case for the application
of the STLS approach. The reason is that the GSE within the STLS approach becomes
completely wrong for large couplingo(y, § = 0) o In(y) [3, 10], and this is not the case
for long-range interaction potentials [26].

7. Conclusion

We presented analytical results for the ground-state energy and the spin susceptibility of a
one-dimensional electron gas with a short-range interaction potential as a function of the
coupling parametey and the spin-polarization parameter These results are quasi-exact.
We calculated collective modes for density and spin excitations.

The parameteryrs = 72/2 was identified as an essential value of the coupling
parametery. The validity range of the STLS approach was discussed and we found that
for y < 2yyra =~ 10 this approach is accurate.
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