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Abstract. We study spin-polarization effects in the one-dimensional electron gas with parabolic
dispersion and a repulsive delta-function interaction potential. Using quasi-exact results for
the unpolarized system and exact results for the fully polarized system we derive quasi-exact
analytical resultsfor the ground-state energy as a function of the spin polarization and the
interaction strength. The spin susceptibility as a function of the interaction strength is calculated
and compared with other calculations. We present results for the sound velocity of collective
spin excitations and the sound velocity of collective density excitations.

1. Introduction

In this paper we calculate the spin susceptibility of a one-dimensional electron gas with
a repulsive short-range interaction potential. Such a model was discussed long ago [1, 2]
and the exact ground-state energy (GSE) of this model has been studied [3]. The GSE
was also calculated within the ladder approximation [4] and was found to be in reasonable
agreement with the exact result. Analytical results for the GSE, which are exact for weak and
strong coupling, have been given recently within the ladder approach [5]. Spin-dependent
properties of this model in the strong-coupling limit have not been discussed in the literature.
However, it is known that the fully polarized system is a non-interacting system due to the
action of the Pauli principle and the short-range nature of the interaction [6]. In this paper
we present an analytical formula for the GSE, including polarization effects, which is exact
for small and large coupling. This GSE can be used to calculate the spin susceptibility and
the collective spin-density modes.

Many-body effects in interacting quantum liquids can also be studied within the Singwi–
Tosi–Land–Sj̈olander (STLS) approach [7] (compressibility) and the Lobo–Singwi–Tosi
(LST) approach [8] (spin susceptibility). A local-field correction describes many-body
effects within these two approaches [9]. We have recently applied the STLS and the LST
approach to the one-dimensional electron gas with a short-range interaction [10]. In this
paper we will argue that the GSE calculation of the STLS approach, generalized to polarized
systems, is a good approach to describe many-body effects for not too large coupling.

We will also show in this paper that no Bloch instability, a transition from an unpolarized
to a polarized system [11], occurs within our short-range interaction model. This is in
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agreement with a theorem that a polarized system always has a larger GSE than a non-
polarized system [12]. On the other hand we argued before [13] that for a long-range
interaction potential such an instability occurs and we calculated the spin susceptibility for
that model within a generalized STLS approach [14]. It is, therefore, important to get
information concerning the validity range of the STLS approach. In this paper we compare
the results of the STLS approach with quasi-exact results. Our detailed calculation of the
STLS approach will be published elsewhere [15].

The paper is organized as follows. In section 2 we present the model. The analytical
results for the ground-state energy are described in section 3. The spin susceptibility is given
in section 4. In section 5 we discuss the local-field correction. An extensive discussion of
our results is given in section 6. We conclude in section 7.

2. Model

We study a one-dimensional electron gas with kinetic energy, characterized by an effective
massm and the parabolic dispersionε(q) = q2/2m. We use for the Planck constant
h/2π = 1. The interaction is characterized by the potentialV0. The interaction potential
between two particles atr1 and r2 is given byV (r1, r2) = V0δ(r1 − r2). In the Fourier
space the interaction potential is independent of the wave numberq and expressed as
V (q) = V0 > 0. The electron densityN , the electron mass and the strength of the
interaction define the dimensionless parameterγ as γ = mV0/N = πV0/2vF > 0 and
vF = kF /m is the Fermi velocity. The electron density defines the Fermi wave number
kF via N = 2kF /π . ρF = N/2εF is the density of states at the Fermi energyεF of the
non-interacting electron gas.

The spin-polarization parameterξ with 06 |ξ | 6 1 is given byξ = (N+−N−)/N with
N = N+ +N−. The electron densitiesN± are expressed asN± = N(1±|ξ |)/2. The Fermi
wave numbers of the polarized subsystems are written askF± = kF (1± |ξ |) = πN±. The
essential parameters of the theory areN andξ for the electron gas andγ for the interaction.

Weak coupling meansγ < 1 and strong coupling is represented byγ > 10. Of course,
it is the intermediate regime 1< γ < 10 where our analytical results are most important for
experimenters. In the weak coupling regime the physics is determined by exchange effects,
which can be calculated analytically. In fact, we we will show that the STLS approach is
a good theory forγ < 10.

3. Ground-state energy

The ground-state energyεg(γ, ξ) per particle is related to the total energyEg(γ, ξ) =
Nεg(γ, ξ). In the following we present results forεg(γ, ξ) in units ofN2/2m via

εg(γ, ξ) = N2ε0(γ, ξ)/2m (1a)

and give explicit expressions forε0(γ, ξ), which is a dimensionless quantity.ε0(γ, ξ) can
be written as [16]

ε0(γ, ξ) = εkin(γ, ξ)+ εH (γ, ξ)+ εex(γ, ξ)+ εcor (γ, ξ) (1b)

with the kinetic (kin) energy contribution as

εkin(γ, ξ) = π2(1+ 3ξ2)/12 (2a)

the Hartree (H ) energy contribution as

εH (γ, ξ) = γ (2b)
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and the exchange (ex) energy contribution as

εex(γ, ξ) = −γ (1+ ξ2)/2. (2c)

We note that within the Hartree–Fock approximation (HFA) the interaction energy is given
by εHFA(γ, ξ) = εH (γ, ξ)+ εex(γ, ξ) = γ (1− ξ2)/2.

In a recent paper [5] we derived, using the ladder theory, for the correlation energy
εcor (γ, ξ = 0) = −γ 2/[π2(1+ 2γ /π2)]. Including the spin polarization we use theansatz
εcor (γ, ξ) = εcor (γ, ξ = 0)f (ξ). f (ξ) describes polarization effects withf (ξ = 0) = 1.
What more can we say aboutf (ξ)? Interaction effects are absent for the fully polarized
system: an electron system with all spins aligned cannot interact via a short-range potential.
It follows that ε0(γ, ξ = ±1) = π2/3 and we conclude thatf (ξ = ±1) = 0. We
note thatf (ξ) is an even function ofξ . In the strong coupling limit it is known that
ε0(γ → ∞, ξ = 0) = ε0(γ → ∞, ξ = ±1) = π2/3. It is obvious that this holds for
every polarization:ε0(γ → ∞,−1 6 ξ 6 1) = π2/3. From our results forγ → ∞ we
obtainγ 1[1− ξ2− f (ξ)] = 0 andγ 0[1+ 3ξ2+ 3f (ξ)] = 4: both equations are solved by
f (ξ) = 1− ξ2. This form off (ξ) is in agreement with the polarization dependence of the
interaction energy obtained within the HFA.

For the three-dimensional electron gas with long-range Coulomb interaction it was
proposed that polarization effects are described byεcor (rs, ξ) = εcor (rs, ξ = 0) +
[εcor (rs, ξ = ±1) − εcor (rs, ξ = 0)]h(ξ) with h(ξ = 0) = 0 and h(ξ = ±1) = 1
[17]. rs is the Wigner–Seitz parameter.h(ξ) is proportional to the factor describing
polarization effects of the exchange term, which is in our case(1+ ξ2), see equation (2c):
h(ξ) = C1 + C2(1 + ξ2). In order to satisfyh(ξ = 0) = 0 and h(ξ = ±1) = 1
we obtainC2 = 1 = −C1 and we conclude that for our modelh(ξ) = ξ2. With
εcor (γ, ξ = ±1) = 0 we deriveεcor (γ, ξ) = εcor (γ, ξ = 0) − εcor (γ, ξ = 0)h(ξ) and
we find εcor (γ, ξ) = εcor (γ, ξ = 0)f (ξ) with f (ξ) = 1− h(ξ) = 1− ξ2.

We conclude that the correlation energy, including polarization effects, is given by

εcor (γ, ξ) = − γ 2(1− ξ2)

π2(1+ 2γ /π2)
. (3)

For weak coupling the energy difference1εcor(γ, ξ → 0) = εcor (γ, ξ → 0)−εcor (γ, ξ = 0)
is given as1εcor(γ, ξ → 0) = γ 2ξ2/π2. Using the mean spherical approximation (MSA)
[14], which is exact in the weak coupling limit, one obtains1εcor,MSA(γ, ξ → 0) =
3γ 2ξ2/2π2 for γ → 0. The MSA represents the random-phase approximation (RPA) or
the mean-field approximation. However, in the MSA the static structure factor is used in
analytical form. The difference in1εcor(γ, ξ → 0) (the factor 1 instead of 3/2) in the weak
coupling regime is the price we have to pay for using a simple function forf (ξ): remember
that f (ξ) = 1− ξ2 was determined from strong coupling (in section 6 we come back to
this point). However, from our numerical results, see figure 1, it is clear that the difference
is of minor importance because for weak coupling the exchange term dominates the GSE.

With f (ξ) = 1− ξ2 we get for the GSE

ε0(γ, ξ) = π2(1+ 3ξ2)

12
+ γ (1− ξ2)

2(1+ 2γ /π2)
. (4)

This is the essential equation of our paper. Forξ = 0 this function was given before and
the compressibility was calculated and related to critical exponents [5]. In the following we
derive conclusions by using the GSE as given in equation (4). The GSE versusγ is shown
in figure 1 for different values of the spin-polarization parameterξ together with results
obtained within the STLS approach [15].
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Figure 1. Ground-state energyε0 versus interaction strength parameterγ according to
equation (4) for different values of the spin-polarization parameterξ . The dashed lines represent
the results within the STLS approach [15].

The total energy also can be written as

ε0(γ, ξ) = π2

12

(
1+ 3ξ2

)+ ∫ γ

0
dλg(λ, ξ, z = 0) (5)

and g(γ, ξ, z = 0) is the pair distribution function. We conclude thatg(γ, ξ, z = 0) is
given by

g(γ, ξ, z = 0) = (1− ξ2
)/[

2
(
1+ 2γ /π2

)2]
. (6)

Due to the Pauli principle the pair distribution function vanishes for the polarized system
with ξ = ±1.

With the ground-state energy one can calculate the chemical potentialµ as

µ/εF = 1+ 3ξ2+ 4γ
(
1+ 3γ /π2

)(
1− ξ2

)/[
π2
(
1+ 2γ /π2

)2]
(7a)

the kinetic energyt per particle as

t/εF =
[
1+ 3ξ2+ 12γ 2

(
1− ξ2

)/[
π4
(
1+ 2γ /π2

)2]]/
3 (7b)

and the potential energyv per particle as

v/εF = 2γ
(
1− ξ2

)/[
π2
(
1+ 2γ /π2

)2]
. (7c)

Note thatv = 0 for γ = 0, 1/γ = 0 or ξ = ±1. For 1/γ = 0 interaction effects disappear,
v = 0, and the particles behave as free (spinless) particles [6]. Our results forµ, t andv
versusγ are shown in figure 2 for different values of the polarization parameter. We note
that the potential energyv has a maximum atγ = γHFA = π2/2 ≈ 4.9 andv decreases
with increasing polarization.

4. Spin susceptibility

The spin susceptibilityκs can be expressed by the second derivative of the GSE as
∂2Eg/N

2∂ξ2 = πvF κ0/2κs [16] with κ0 = 4m/π2N3 as the spin susceptibility of the
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Figure 2. Chemical potentialµ, kinetic energyt and potential energyv per particle (in units
of the Fermi energyεF of the free electron gas) versus interaction strength parameterγ for
different values of the spin-polarization parameterξ according to equation (7).

free electron gas. One obtains

κ0

κs
= 1+ 2

π2
lim
ζ→0

[
∂2(εex + εcor )

∂ξ2

]
= 1+ κ0

κs,ex
+ 2

π2
αs. (8)

αs = limξ→0[∂2εcor (γ, ξ)/∂ξ
2] is called the spin stiffness. We mention that the

Hartree term does not contribute to the spin susceptibility. The exchange contribution
is κ0/κs,ex = −2γ /π2. With equation (4) we derive for the correlation contribution
αs = 2γ 2/[π2(1 + 2γ /π2)]. The limiting behaviour isαs = 0.203γ 2 for γ → 0 and
αs = γ (1− π2/2γ ) for γ →∞.

With equation (4) we find the analytical result for the spin susceptibility as
κ0

κs
= 1

1+ 2γ /π2
. (9)

The asymptotic result is written asκ0/κs = 1− 2γ /π2 + 4γ 2/π4 for γ → 0. The term
−2γ /π2 represents the exchange correction. The term 4γ 2/π4 is the first correlation
correction to the inverse spin susceptibility. In the strong coupling limit we obtain
κ0/κs = π2(1− π2/2γ )/2γ for γ → ∞. We mention thatκs/κ0 = 1+ 2γ /π2 increases
linearly with increasing coupling, a behaviour also found for the Hubbard model [18].

It is interesting to note that the spin susceptibility, as given in equation (9), can also be
obtained fromκ0/κs = 4[ε0(γ, ξ = 1)− ε0(γ, ξ = 0)]/π2. A similar equation is sometimes
used for interacting systems with a long-range Coulomb interaction. Within three different
methods, (i)f (ξ) = 1− ξ2, (ii) h(ξ) = ξ2 and (iii) ε0(γ, ξ = 1)− ε0(γ, ξ = 0), we found
κ0/κs as given in equation (9). We believe that this fact gives credit to our expression for
the spin susceptibility.



3964 A Gold

Figure 3. Inverse spin susceptibility 1/κs (in units of the inverse spin susceptibility of the free
electron gas 1/κ0) versus interaction strength parameterγ according to equation (9) as the solid
line. The results according to the HFA, the MSA, the LST approach [10] and the STLS approach
[15] are also shown.

Let us now discuss some approximating expressions for the spin susceptibility. Within
the HFA, neglecting correlation, one obtains

κ0

κs,HFA
= 1− 2γ /π2. (10)

In a recent paper an analytical result for the spin susceptibility of a one-dimensional electron
gas with a long-range interaction potential was calculated within the MSA [14]. For the
present model we obtain

κ0

κs,MSA
= 1

(1+ 4γ /π2)1/2
. (11)

The weak coupling expansion is written asκ0/κs,MSA = 1− 2γ /π2 + 6γ 2/π4 for γ → 0.
We note that the correlation correction is 6γ 2/π4 and somewhat larger that found in our
analytical approach. Numerically, this difference is barely visible, see figure 3.

Our different results for the spin susceptibility versusγ are shown in figure 3. We
find 1/κs,HFA < 1/κs < 1/κs,MSA. We note thatκ0/κs > 0 and never becomes zero. This
shows that the non-polarized system is stable for any value of the interaction parameterγ .
A Bloch instability κ0/κs,HFA = 0 occurs within the HFA atγHFA = π2/2. Correlation
effects shift this instability point toγ →∞.

Our calculation using the STLS approach, also shown in figure 3, indicates that the
STLS approach has a validity range of aboutγ < 10≈ 2γHFA. The term STLS is applied
for the calculation of the spin susceptibility using GSE calculations [15]. Within the LST
approach, see our results in [10], the spin susceptibility is calculated via the local-field
correction and this approach is rather inaccurate, as can be seen in figure 3. On the other
hand we mention that the LST approach does not predict an (artificial) instability as does
the HFA.

5. Local-field correction and collective modes

Our results forκ0/κs can be applied to obtain information on the dynamic properties of
the interacting electron gas. We define the local-field correctionGs(q, ω) by the dynamic
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Figure 4. Density velocityvd and spin velocityvs (in units of the Fermi velocityvF of the free
electron gas) versus interaction strength parameterγ . The dotted lines correspond to the STLS
approach derived from GSE calculations [15].

spin-density response functionXs(q, ω) as [9]

Xs(q, ω) = X0(q, ω)

1−Gs(q, ω)X0(q, ω)
. (12)

X0(q, ω) is the Lindhard function of the free electron gas. Note that the local-field correction
depends onq andω. By using the compressibility sum ruleXs(q → 0, ω = 0) = N2κs
one finds [16]

κ0/κs = 1− 4γGs(0, 0)/π2. (13)

With the analytical expression forκ0/κs in equation (9) we derive

Gs(0, 0) = 1/[2(1+ 2γ /π2)] (14)

with Gs(0, 0) = (1− 2γ /π2 + 4γ 2/π4)/2 for γ → 0 andGs(0, 0) = π2/4γ for γ →∞.
Within the LST approach, whereGs(q, ω) = Gs is independent ofω and q, we found
Gs = π2/8γ for γ → ∞ [10]. We conclude that theγ dependence ofGs for largeγ is
the same as forGs(0, 0); however, the prefactors are different.

The collective modes are given as the poles ofXs(q, ω). One finds in the long
wavelength limitωs(q)/vF |q| = [κ0/κs ]1/2 [16]. For the sound velocityvs of spin (s)
waves, usingωs(q → 0) = vs |q|, we obtain

vs = vF /(1+ 2γ /π2)1/2. (15)

The relation for spin waves is analogous to the relation found for the sound velocityvd
of density (d) waves given byvd = vF [κ0/κ]1/2 with ωd(q → 0) = vd |q| and κ as the
compressibility of the system [16]. Analytical results forκ0/κ have been given in [5].

Numerical results forvd/vF and vs/vF versusγ are shown in figure 4 together with
the results of the STLS approach. The STLS results for the compressibility and the spin
susceptibility are obtained from GSE calculations [15]. We conclude that the STLS approach
is trustworthy forγ < 10≈ 2γHFA. Within the LST approach [10] one findsvs/vF = 0.5
for γ →∞ becauseGs(0, 0) = 2Gs .

In the literature the difference betweenvd and vs is called spin-charge separation
[19]. Numerical results similar to our results as shown in figure 4 have been found for
the one-dimensional Hubbard model [20]. The two parametersKd and Ks , defined by
∂2Eg/∂N

2 = πvd/2Kd and by ∂2Eg/N
2∂ξ2 = πvs/2Ks , are related to non-universal
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exponents of the power-law behaviour of correlation functions [19]. For our model we find
Kd = (κ/κ0)

1/2 [5] andKs = (κs/κ0)
1/2 = (1+ 2γ /π2)1/2. We conclude that analytical

results are obtained forKd andKs . We are not aware that in the literature analytical results
have been obtained forKs .

6. Discussion

6.1. The polarization ansatz

The essential approximation in this paper was the approximation for polarization dependence
of the correlation energy. We usedf (ξ) = 1−ξ2. We have chosen this form for convenience
and because the application of three different methods leads to the same form of the spin
susceptibility.

In fact, we could introduce a more complicated function, for instancef (ξ) = 1−p(γ )ξ2

with p(γ → ∞) = 1+ O(1/γ 2) andp(γ → 0) = 3/2. For the spin susceptibility we
obtain

κ0

κs
= 1− 4γ 2[1− p(γ )]/π4

1+ 2γ /π2
. (16)

With p(γ ) = (3+ γ 2)/(2+ γ 2), which has the correct asymptotical behaviour, we derive
in the weak coupling limitκ0/κs = 1− 2γ /π2 + 6γ 2/π4. This is the exact expression
for weak coupling. In the strong coupling limit, usingp(γ → ∞) = 1+ 1/γ 2, we find
κ0/κs = (1+ 4/π4)/(1+ 2γ /π2) and the factor 4/π4 ≈ 0.04 in this expression is due to
the use of the functionp(γ ). This shows that in the strong coupling limitp(γ ) modifies
our results by less than 4%. We have verified numerically that forγ < 10 the corrections
introduced byp(γ ) are even smaller than 4%. This is clear because our results obtained
before withp(γ ) = 1 (f (ξ) = 1− ξ2) are in agreement with the STLS approach, which
is the correct weak coupling theory, see figure 3. We believe that these arguments are
convincing and justifyf (ξ) = 1− ξ2. However, the discussion also shows that even ‘more
accurate’ results can be obtained by using a ‘more sophisticated’ polarization dependence
of the correlation energy.

We would like to mention that for the LFC, includingp(γ ), we obtain

Gs(0, 0) = 1+ 2γ [1− p(γ )]/π2

2(1+ 2γ /π2)
(17)

andp(γ →∞) does not modify the strong coupling limit.

6.2. Results

The collective modes are determined by the compressibility and the spin susceptibility.
Our analytical results concerning spin-density modes and the spin susceptibility might be
useful for experimenters [21]. We mention that our theory describes collective density
modes and collective spin modes together with one-particle (electron–hole) excitations, see
equation (12). In experiments with quantum wires these three kinds of mode have been
observed [22–24]. Note that within theories using the bosonization approach one-particle
excitations do not exist [19, 20]—they become lost in the bosonization approximation. Of
course, in order to describe qualitatively the collective modes found in experiments with
quantum wires [22–24], a long-range Coulomb interaction potential [25] should be used in
the calculation. However, we believe that the model discussed in this paper is the simplest
model in solid-state physics in order to study many-body effects.
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From our results for the spin susceptibility, the collective modes and the comparison
with results obtained from GSE calculations within the STLS approach we conclude that
the STLS approach gives quantitatively accurate results forγ < 2γHFA ≈ 10. We believe
that the case of a short-range interaction potential is the worst case for the application
of the STLS approach. The reason is that the GSE within the STLS approach becomes
completely wrong for large coupling,ε0(γ, ξ = 0) ∝ ln(γ ) [3, 10], and this is not the case
for long-range interaction potentials [26].

7. Conclusion

We presented analytical results for the ground-state energy and the spin susceptibility of a
one-dimensional electron gas with a short-range interaction potential as a function of the
coupling parameterγ and the spin-polarization parameterξ . These results are quasi-exact.
We calculated collective modes for density and spin excitations.

The parameterγHFA = π2/2 was identified as an essential value of the coupling
parameterγ . The validity range of the STLS approach was discussed and we found that
for γ < 2γHFA ≈ 10 this approach is accurate.
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